Microwave triggered metal enhanced chemiluminescence: Quantitative protein determination.

نویسندگان

  • Michael J R Previte
  • Kadir Aslan
  • Stuart N Malyn
  • Chris D Geddes
چکیده

We present a new technology that offers a faster alternative to the chemiluminescence-based detection that is used in protein assay platforms today. By combining the use of silver nanostructures with chemiluminescent species, a technique that our laboratories have recently shown can enhance the system photon flux over 50-fold, with the use of low-power microwave heating to additionally accelerate, in essence "trigger", chemiluminescence-based reactions, then both ultrafast and ultrabright chemiluminescence assays can be realized. In addition, the preferential heating of the nanostructures by microwaves affords for microwave triggered metal enhanced chemiluminescence (MT-MEC) to be localized in proximity to the silvered surfaces, alleviating unwanted emission from the distal solution. To demonstrate MT-MEC, we have constructed a model assay sensing platform on both silvered and glass surfaces, where comparison with the identical glass substrate-based assay serves to confirm the significant benefits of using silver nanostructures for metal-enhanced chemiluminescence. Our new model assay technology can detect femtomoles of biotinylated BSA in less than 2 min and can indeed be modified to both detect and quantify a great many other biomolecules as well. As compared to traditional western blot approaches, MT-MEC offers protein quantification, high-sensitivity detection combined with ultrafast assay times, i.e., <2 min.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multicolor microwave-triggered metal-enhanced chemiluminescence.

We describe a novel platform technology for both significantly enhancing and obtaining chemiluminescence signatures "on-demand", subsequently named Microwave-Triggered Metal-Enhanced Chemiluminescence. By combining the use of silver nanoparticles to plasmon enhance chemiluminescence with the use of low power microwaves to localize heating around the nanostructures, we can both optically amplify...

متن کامل

Spatial and temporal control of microwave triggered chemiluminescence: a protein detection platform.

We have combined the principles of microwave circuitry and antenna design and our recent work in microwave-triggered metal-enhanced chemiluminescence to now "trigger" chemically and enzyme-catalyzed chemiluminescent reactions with spatial and temporal control. With this technology platform, we achieve spatial and temporal control of enzyme and chemically catalyzed chemiluminescence reactions to...

متن کامل

Microwave-triggered surface plasmon coupled chemiluminescence.

Surface plasmon spectroscopy (SPS) is commonly implemented as an analytical tool to characterize thin kinetic processes and binding reactions at interfaces.1 Due to the limited sensitivity of SPS for the detection of dilute analytes of low molecular mass, surface plasmon coupled fluorescence (SPCF) or, alternatively, surface plasmon coupled emission (SPCE) has been proposed as an alternative me...

متن کامل

Microwave-Accelerated Plasmonics: Application to Ultra-Fast and Ultra-Sensitive Clinical Assays

In recent years our laboratory has described the favorable effects of fluorophores in close proximity to metallic nanostructures (1-6). These include, increased system quantum yields (increased detectability) and much improved fluorophore photostabilities. These effects have led to many applications of metal-enhanced fluorescence (MEF) including, improved DNA detection (7, 8), enhanced ratiomet...

متن کامل

Metal-enhanced chemiluminescence: advanced chemiluminescence concepts for the 21st century.

Chemiluminescent-based detection is entrenched throughout the biosciences today, such as in blotting, analyte and protein quantification and detection. While the biological applications of chemiluminescence are forever growing, the underlying principles of using a probe, an oxidizer and a catalyst (biological, organic or inorganic) have remained mostly unchanged for decades. Subsequently, chemi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Analytical chemistry

دوره 78 23  شماره 

صفحات  -

تاریخ انتشار 2006